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Instability of symmetric Couette flow in a granular gas:
Hydrodynamic field profiles and transport

M. Sasva´ri,1,2 J. Kertész,1 and D. E. Wolf2
1Department of Theoretical Physics, Technical University of Budapest, Budafoki u´t 8, H-1111 Hungary

2 University Duisburg, D-45478 Duisburg, Germany
~Received 22 March 2000!

We investigated the inelastic hard-disk gas sheared by two parallel bumpy walls~Couette flow!. In our
molecular dynamic simulations we found a sensitivity to the asymmetries of the initial particle positions and
velocities and an asymmetric stationary state, where the deviation from~anti!symmetric hydrodynamic fields is
stronger as the normal restitution coefficient decreases. For better understanding of this sensitivity we carried
out a linear stability analysis of the former kinetic theoretical solution@J. T. Jenkins and M. W. Richman, J.
Fluid. Mech.171, 53 ~1986!# and found it to be unstable. The effect of this asymmetry on the self-diffusion
coefficient is also discussed.

PACS number~s!: 45.70.Mg, 45.70.Qj, 51.10.1y, 51.20.1d
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I. INTRODUCTION

In the last decade the clustering instability of undriv
granular gases has been extensively researched. Sinc
first explanation of the instability@1#, investigations have
been made by several methods including stability analysi
the hydrodynamic equations@2,3# and fluctuating hydrody-
namics@4#. The influence of nonlinear coupling between h
drodynamic modes has also been studied@5#, and the long
time behavior of the clustered state examined with mo
coupling theories@6#. The evolution of vortex velocity pat
terns preceding the clustering instability is well understo
@4#, and the minimal system size, where the instability a
pears and its dependence on the restitution coefficient h
been found@5,7#.

A driven configuration, the uniformly sheared inelas
hard-sphere gas~with periodic boundary conditions! also
shows an instability and resulting pattern formation. In@8# it
was shown that this pattern formation is guided by an ins
bility for short times and a shearing-caused convection
longer time scales. The special importance of this system
the coupling of macroscopic and microscopic length sca
in sheared situations, as discussed in@9–11#.

A more realistic configuration is Couette flow, the she
ing of the gas between two parallel walls moved in oppos
directions. For this configuration with walls consisting
disks Jenkins and Richman derived boundary conditions
the momentum and heat transfer of the walls@12#, proceed-
ing from their kinetic theory for dense granular gases@13#. In
subsequent years this theory was developed further@14# for
non-Maxwellian velocity distributions as in@12#. In all of
these papers the resulting hydrodynamic fields are symm
~density and granular temperature! or antisymmetric~flow
field! around the halfway point between the two boundi
walls. It is of major interest whether the clustering instabil
occurs in this configuration also and, if so, what its con
quences are in the Couette flow. This paper is devoted to
investigation of these questions.

The paper is organized as follows. In Sec. II we pres
molecular dynamic simulations of this system, where
PRE 621063-651X/2000/62~3!/3817~9!/$15.00
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found an interesting sensitivity to the initial conditions of th
simulation and asymmetric hydrodynamic fields, contrad
ing the results in@12#. Therefore we carried out a linea
stability analysis~Sec. III! around the solution of Jenkins an
Richman @12# and found it to be unstable against certa
fluctuations. We discuss the effect of this instability on t
diffusion coefficient in Sec. IV and close the paper with
discussion in Sec. V.

II. SIMULATION RESULTS

The system considered here consisted ofN identical, in-
elastic hard disks with massm51 and radiusr 51 confined
in a rectangular area of sizeLx3Ly . This two-dimensional
area is bounded by parallel walls on two sides, which a
define the directionx and are of lengthLx . The system is
closed through periodic boundary conditions in thex direc-
tion. The walls areLy distance apart (y direction!. The origin
of the coordinate system is placed in the middle of the sim
lated system, which sets the center of the wall disks ay
56Ly/2.

The disks interact through an inelastic rough hard-sph
potential, meaning that instantaneous two-particle collisio
occur characterized by ratios of the final and initial velocit
in the normal and tangential directions given by the norm
and tangential restitution coefficientsen52vn

f /vn
i and et

5v t
f /v t

i , f and i meaning the final and initial velocities. In
case of sliding contactset is replaced by the ratio of tangen
tial and normal momentum transfer characterized by the f
tion coefficientm. As a driving force we move one of th
walls with constant velocity 2U.

We investigated the system with the event-driven mole
lar dynamics method ideal for simulating instantaneous c
lision rules @15#. To characterize the collisions we usedet
520.3 andm50.2 and varieden between 0.6 and 0.99. W
consider the system sizeLx5Ly540 and the wall velocity
2U510 if not otherwise mentioned. The post collision v
locities and angular velocities as functions of the precollis
values are~for m51, r 51)
3817 ©2000 The American Physical Society
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FIG. 1. Snapshot configurations in the steady state for different restitution coefficientsen50.7, 0.8, 0.9 from left to right. Lines from
centers of particles indicate the direction and magnitude of its velocity.
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vi85vi2
11en

2
@~vi2vj !rn#rn1

j t

m
r t , ~1!

vj85vj1
11en

2
@~vi2vj !rn#rn1

j t

m
r t , ~2!

vi85vi2
j t

I i
~rn3r t!, ~3!

vj85vi2
j t

I j
~rn3r t!. ~4!

rn is the normal vector of disk surfaces in collisionrn5(r j
2r i)/ur j2r i u and r t the tangential vector, the normal vect
rotated byp/2 in the counterclockwise direction.I i and I j
are the moments of inertia of the disks. The parametej t
depends on the type of collision in the tangential directio

j t52m
11en

2
~vi2vj !rn if f.f0 ~sliding contact!,

~5!

j t5
et21

7
vt if f<f0 ~sticking contact!, ~6!

wherevt is the tangential velocity

vt5~vi2vj !r t1r ~vj1vj ! ~7!

andf0 separates the sliding and sticking regions in terms
the angle of incidencef5uvtu/@(vi2vj )rn#,

f05
7

2
m

11en

12et
. ~8!

To avoid inelastic collapse@16#, the intrinsic numerical
breakdown of the method, we stopped the simulations w
the time interval between two subsequent collisions beca
smaller than the precision of the computations propose
@1#; but this stop occurred only for the smallest restituti
coefficient useden50.6, and for special initial condition
where most of the particles did not move and the well-kno
chainlike arrangement of particles could evolve after
simulation started. For the experiments below we used
ticle numbers N5100–240, meaning area fractionn
P@0.245,0.49#. As test runs for larger systems we used$Lx

5Ly5100, N5500, (n̄50.162)% and $Lx5Ly5100, N

51000, (n̄50.324)% parameter sets, resulting in the sam
phenomenon.
,

f

n
e

in

n
e
r-

Using several different starting configurations we not
that a dense region appears at one of the walls in the sys
which becomes more and more distinct with decreasingen ,
but is not recognizable foren near 1 ~Fig. 1!. Using ran-
domly placed particles and an initial uniform velocity distr
bution with several mean values in thex direction, we ob-
served that the initial value of the mean particle veloc
determines the wall that is chosen for building up a cluste
regime. If we definevd as

vd5^v&2U,

we can characterize the final position: ifvd.0 the upper
wall y5Ly/2 is chosen; ifvd,0 the lower wally52Ly/2
~Fig. 2!. We used different initial conditions to test this find
ing @17#. With particles placed in a stripe in the middle of th
system, organized on a lattice with initial velocityU, and
using two of them shot against the two walls with initi
velocities that were Galileo symmetric with the situation
two walls moving at6U, we could maximize the time
needed to develop the nonsymmetric density field, bu
eventually appeared after these initial conditions also,
cause numerical errors provide the needed fluctuation
drive the system into one of the steady states.

We did simulations for smooth disks (et51 andm50)
also and found the same effect, namely, if we chooseen to be
small enough there is a distinct band of particles at one of
walls and foren close to 1 this band does not evolve. Th
normal restitution below which we can speak about an as
metric phase depends on the density; for higher densitie
appears at higheren values for the same system sizeLy . It
also depends onLy for fixed density; for largerLy the kinetic
energy influx per particle decreases as it is proportiona
the length of the wall. The assumed critical restitution co
ficient ec(r,Ly) does not depend on the driving velocity asU
is the only parameter that includes the dimensionality of ti
and changingU is a rescaling of the time unit. For invest
gation of intermediateen values for which the dense stripe
not so definite, we measured density and velocity profi

FIG. 2. Snapshot configurations in the steady state for differ
initial velocity distributions (en50.7). Left,vd,0; right, vd.0.
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and the granular temperature in the system and found
same effect in the asymmetric nature of these functions~Fig.
3!. One can observe that with decreasing restitution the m
mum of the granular temperature moves to one of the wa

We found these results to be valid for a broad range
densities and for different system sizes. For low restitutio
crystalline structure appeared as compact layers near a
The fact that the simulations did not stop at such dense c
figurations implies that the disks moved around a fixed pl
and did not form a connected line of particles long enou
for inelastic collapse to occur@16#.

Simulations with time-step-driven molecular dynami
using damped harmonic oscillator forces between the
ticles as a function of their overlap@15#—to achieve velocity
independent restitution—show the same clustering effec
the walls. This suggests that this effect is closely related
dissipative collisions and does not require instantaneous
lision rules.

III. STABILITY OF THE JENKINS-RICHMAN SOLUTION

Our findings above contradict the kinetic theoretical c
culation of Jenkins and Richman@12# and the improved ver-
sions of the problem@14#, inasmuch as the cited results a
always~anti!symmetric profiles in they direction for the hy-
drodynamic fields of density, flow velocity, and granul
temperature. This contradiction raises the question of the
bility of the ~anti!symmetric solution. Moreover, it is plau
sible that in an elastic system the hydrodynamic profiles w
be symmetric, although this is not a steady state becaus
the ever rising temperature caused by viscous heating. Th
fore, it is of interest to see whether a phase transition occ
in the system; specifically, whether there exists a criticalen
value separating the~anti!symmetric and asymmetric phas
or the~anti!symmetric solution is unstable at arbitrarily sma
inelasticities. Because at high densities the instability
question arises at normal restitution closer to 1 and kin
theoretical calculations are more and more inadequate
increasing inelasticity, it is reasonable to use kinetic theo
for dense systems and we desist from the consideratio
more sophisticated hydrodynamic equations for low den

FIG. 3. Granular temperature in thex and y directions as a
function of y ~in units of disk radiusr 51) across the system fo
en50.9. Values are averages over stripes of width 4 parallel to
walls for a system of sizeLy540.
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systems@18,19#. Another reason for taking theories for den
gases into consideration is that the underlying assumpt
are more valid as the ratio of the simulated system size to
mean free path is much larger in a dense gas. For th
reasons we performed a linear stability analysis of
Jenkins-Richman solution. We now first give the equatio
of Jenkins and Richman@13# and the boundary condition
and the solution of the problem@12#. Then we perform a
linearization around this solution and calculate numerica
the eigenvalues of the stability matrix.

A. Jenkins-Richman solution

In this section we briefly describe the Jenkins and Ri
man @12# solution for a two-dimensional system of inelast
hard disks driven by two parallel bumpy walls. The hydr
dynamic equations for the densityr, flow velocity u, and
fluctuation energyT for smooth disks without external force
are ~see@13#!

ṙ52r“•u, ~9!

ru̇52“•P, ~10!

rṪ52“•Q2Tr~P•“u!2g. ~11!

Here the dissipation rateg and heat transport coefficientk
are of the form

g5
4~12en!kT

s2 , ~12!

k5
2rsng0T1/2

p1/2
, ~13!

whereg0 is the Enskog correction term accounting for e
cluded volume effects as a function of the packing fractionn,

g05
1627n

16~12n!2 ,

ands52r is the disk diameter. The constitutive relations f
the energy fluxQ and pressure tensorP are

Q52k“T, ~14!

P5F2rng0T2
1

2
k Tr~D!G I2kD. ~15!

From the boundary geometry and the assumption of a M
wellian velocity distribution the momentum and fluctuatio
energy supplied by the wall in unit time and length are d
terminable@12#. This needs an expansion ine5s/Ly and
assumptions about the dependence of given ratios of the
drodynamic fields one ~see@12#!, which narrows the validity
of the theory. The supplied momentum obtained in that w
is

e
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Ma5
1

2
rx~11en!TFna1S 2

p D 1/2 va

T1/2S u

sinu
2cosu D

1S 2

p D 1/2 s

T1/2
ug,bI abgG ~16!

with

I abg5S 2

3
sin2u22Dnanbng

2
2

3
sin2u~natbtg1nbtatg1ngtatb!, ~17!

and the supplied fluctuation energy is

D5S 2

p D 1/2rx~12en!T3/2

sinu
, ~18!

wheren and t are the normal and tangential vectors of t
wall, respectively, andu characterizes the bumpiness of t
wall. For wall disks with the same diameter as that of the
particles,u is given by@12#

sinu5
s

d
,

where d is the distance separating the centers of two w
disks. For the wall geometry of our system,d52s and
therefore sinu51/2 and u5p/6. In Eqs. ~16! and ~18! x
accounts for static correlation effects in collisions at t
boundary andva , a5x,y is the slip velocity, the difference
between the velocity of the wall and the flow,v5U2u.
From the equality of momentum and energy transfer of
wall for unit time and unit length the boundary conditio
are

M5P•n, ~19!

M•v2D5Q•n. ~20!

The solution can be calculated from these equations ex
for one parameter—the value of the solid fraction at
boundaries~for fixed number of particles!—which must be
iterated to get the given density in the system, which we
numerically. Thus the form of the hydrodynamic fields so
ing the boundary value problem is

w~y!5
l~U2v !Ns

2p1/2sinh~l/2!SL
coshS ly

L D , ~21!

u~y!5
U2v

sinh~l/2!
sinhS ly

L D ~22!

with T(y)5w(y)2, S andN are the shear stress and pressu
respectively, andl must be solved from@12#

l

2
tanhS l

2D5
~12en!Lu

2A2s sinu
S sinu@12~4A2/3!sin2u#

u~u/sinu2cosu!
21D .

~23!
s

ll

e

pt
e

d
-

,

The density, calculated from

x52ng0 , ~24!

must fulfill the condition that its integral on the whole sy
tem gives the prepared particle number. As mentioned
that condition the only free parameter remaining is the d
sity at the boundaries, which must be calculated iterative

B. Stability analysis

Around the above solution of the boundary value probl
we performed a linear stability analysis with the perturb
quantities

r85r1dr, ~25!

u85u1du, ~26!

T85T1dT. ~27!

We split the velocity perturbation in thex and y directions
and use plane waves for the perturbations,

dr5drk exp~2 ik•r !, ~28!

S du
dwD5S duk

dwk
Dexp~2 ik•r !, ~29!

dT5dTk exp~2 ik•r !. ~30!

With this choice the resulting equations have the form

S ] tdrk

] tduk

] tdwk

] tdTk

D 52AS drk

duk

dwk

dTk

D , ~31!

whereA is the stability matrix with elements given in th
Appendix.

With the help ofMAPLE V release 5 we analyzed the e
genvalues of the stability matrixA for different densities,
restitution coefficients, wave numbers, and sites. In F
4–7 we present results for some of the parameter sets tha
representative for the different situations. With the choice
the negative sign in Eq.~31! a negative eigenvalue means a
unstable solution. All of the figures shown feature at le
one eigenvalue that is negative in the small wave num
region. This signalizes an unstable fluctuation. The up
zero point of this eigenvalue approaches the zero wave n
ber as we increase the restitution coefficient and beco
smaller than 2p/L, the smallest possible wave number in t
system, at a certain value ofen that depends on the othe
parameters. However, this value is very close to 1, wh
suggests that the symmetrical solution is always unstable
early, and nonlinear effects can move this transition poin
higher inelasticities. We analyzed the most unstable direc
of the solution also, as we plotted the unstable eigenvalue
a given amplitude of the wave number and for the wh
angle measured from the direction of the mean flow in
counterclockwise direction, as seen in Figs. 8 and 9. Acco
ing to the figures, the most unstable directions are close
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the angles6p/4. These are the same angles found to be
governing unstable directions in linear order for pattern f
mation by Tan and Goldhirsch for the uniformly shear
granular gas@8#.

IV. SELF-DIFFUSION COEFFICIENT
AND CLUSTERED FLOWS

In this section we investigate the crossover to asymme
stationary states of the system and try to show the effec
the instability discussed above on the transport coefficie
For this reason we measured the mean square displace
of the particles

r x
25Š@x~ t !2^vx&t2x~0!#2

‹, r y
25^@y~ t !2y~0!#2&

~32!

and velocity correlation functions

cx5Š@vx~ t !2^vx&#@vx~0!2^vx&#‹, cy5^vy~ t !vy~0!&
~33!

in the system for streamwise and perpendicular directions
Eqs.~32! and~33! the bracketŝ & mean space and ensemb

FIG. 4. Eigenvalues of the stability matrix foren50.9, y50,

average packing fractionn̄50.486, andka points in the direction
a5p/4 measured counterclockwise from the mean flow directi

FIG. 5. Eigenvalues of the stability matrix foren50.95, y50,

kx52p/L, and average packing fractionn̄50.486 as a function of
kyL/p.
e
-

ic
of
s.
ent

In

averages over the whole system.^vx& was calculated from
the measured average displacement of the particles aver
over several~50–100! runs and over particles. Ensemble a
erages were carried out the following way. For every para
eter set we let the system relax to its steady state. The m
sured granular temperature averaged over stripes of w
15r generated theT(y) function. Before every measure
ment we perturbed the velocities of every particle with
uniformly distributed velocity, the support of the distributio
having the length of 2AT(y), wherey is the coordinate of the
particle. After relaxation we carried out the measureme
The ^vx& average velocity was evaluated from a linear fit
the averagedx displacement of the particles, that is, th
steepness ofx as a function of time.

From the mean square displacement for long times
could evaluate the diffusion coefficient of the particles. W
fitted a power law with two fit parametersD andb,

f ~ t !52Dtb,

.

FIG. 6. Eigenvalues of the stability matrix foren50.997,

y50, average packing fractionn̄50.486, andka points in the
direction a5p/4 measured counterclockwise from the mean flo
direction.

FIG. 7. Eigenvalues of the stability matrix foren50.999, y

50, average packing fractionn̄50.486, andka points in the
direction a5p/4 measured counterclockwise from the mean flo
direction.
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to the mean square displacement restricted to long time
the value ofb was near 1 up to errors of60.02, the system
was assumed to be in a diffusive state. After that we to
b51 and fitted f (t) again for D. The time taken for the
system to evolve into this diffusive state depends onen , as
suggested in@20# for the homogeneous cooling state, a
also depends on the steady state configuration, which is
en dependent. There are several reasons for this. Firs
achieve this diffusive behavior in thex direction the particles
have to experience the characteristics of the system
finiteness and inhomogeneity of the hydrodynam
profiles—and therefore have to travel between the two w
several times. Asen decreases and a dense cluster evolve
one wall, this recognition takes more and more time. Al
the form of the velocity correlation function shows increa
ing correlations with decreasingen , as expected. After a
short (t'10) fast decay,cx shows an exponential decay u
to timest'100, and either changes to a slow decay for la
times ~small en) or is relaxed~largeen) ~Fig. 10!. Both the
short time correlations and the characteristic time of the
ponential increase as we decreaseen , along with an earlier
changeover to the slow decay if it is apparent.

The plot of the diffusion coefficient versus restitution c
efficient ~Fig. 11! shows a plateau value of the diffusio
coefficient for larger values ofen . Below ec50.82, D in-
creases fast with decreasingen . We suggest that this valu
marks the transition point where the particles begin to pre
one of the walls, and the dilute regions appearing allow fo
greater mobility for the particles. Making use of the not
exponential decay of the velocity autocorrelationcx , we also
estimatedD as the integral of a fitted exponential,

D'At if cx'Ae2t/t,

knowing that this underestimatesD, asAe2t/t is smaller than
cx for very short and long times, but gives nearly the sa
result as the long time behavior ofr x

2 above the transition
point and shows a smaller increase below it~Fig. 11!. The
difference between the values of the diffusion coefficient
low ec , obtained with different methods, comes from the fa
that under the transition point there appears a slow deca

FIG. 8. Angle dependence of the real part of the eigenvalues

en50.95, y50, andn̄50.486. The eigenvalue is plotted as a fun
tion of the angle measured from the flow directionkx

5(2p/L)cos(f) andky5(2p/L)sin(f).
If

k

lso
to

ls
at
,
-

r

-

r
a

e

-
t
in

the velocity correlation function after the exponential dec
used to approximate it. The short time exponential de
characterizes only the dilute part of the system. The s
decay thereafter comes from the averaged effects of
slight diffusion in the dense region and from the influence
particles entrapped or emitted by the dense region from o
the dilute one. In the absence of the asymmetric dense s
above the transition pointec , only the exponential relaxation
appears.

The buildup of correlations also causes increased tim
be needed to reach the diffusive state, thus increasing s
lation time, which restricted us to smaller system sizes
dense material, as it did not allow fast computations. The
fore the investigation of the size and density dependenc
the transition point is left for later studies.

The retrievable information from the mean square d
placement in they direction is bounded like the system itse
namely, it goes to a plateau value according toLy . This
finiteness influences velocity correlations also.cy shows only
short time fast decaying correlations~and anticorrelations ap
pear for smallen). With the methods discussed above we
not notice any mark of the transition~only the small signal
presented in@21# for time-step-driven simulations!.

For more definite insight into the behavior of the syste
we carried out measurements specific to the configuratio
the stationary states. We divided the system into stripes
allel to the walls and restricted the averages in Eq.~33! to
particles starting from these stripes,

cx
i 5^@vx~ t !2 v̄x

i ~ t !#@vx~0!2 v̄x
i ~0!#& i ,

cy
i 5^vy~ t !vy~0!& i , ~34!

where ^ & i denotes averaging over particles in stripei at t
50 and the ensemble average described above. The vel

v̄x
i (t) is the average velocity of particles starting from stri

i at time t. This velocity correlation function characterize
the stripe more and more as the difficulty in leaving t
stripe increases, which is the case in the dense layer evol
at the wall. The fact that the velocity correlation functioncx

i

or FIG. 9. Angle dependence of the real part of the eigenvalue

en50.997, y50, and n̄50.486. The eigenvalue is plotted as
function of the angle measured from the flow directionkx

5(2p/L)cos(f) andky5(2p/L)sin(f).
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FIG. 10. Velocity autocorrelation functionscx ~in units of U2525) for a system with parametersLx520, Ly520, and N550

( n̄50.426). In order of increasingcx for short times areen50.8,0.78,0.77,0.76. Inset: Velocity autocorrelation functionscx
i ~same units! for

a systemLx580, Ly520, N5200 (n̄50.426), ande50.76. The system was divided into five stripes of width 4. Only correlation functi
in the stripes at the walls are shown. Solid line marks the function at the wall of the cluster, and dot-dashed line at the opposite w
is measured in natural units (r 51,U55).
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does not show a negative minimum at short times~Fig. 10!—
which would be a sign of caging effects—suggests that
particles essentially comoving with the wall barely move
the x direction with respect to one another. Instead, beca
of the shear situation, they are driven by diagonal collisio
which dominate the motion and smooth outcx . There is a
negative minimum incy

0 ~0 indexing the stripe nearest to th
wall at the cluster! but this includes the effect of the colli
sions with the wall particles, which give a negative contrib
tion, as also seen in the velocity correlations in the stripe
the opposite wall. This negative minimum appears also
restitution coefficients well above the transition.

V. DISCUSSION

In this paper we considered a granular gas sheared by
bumpy walls. By means of molecular dynamics simulatio
we discovered that the system shows a spontaneous sym
try breaking as it evolves to a stationary state that is as
metric in the hydrodynamic fields with respect to the cent
line of the system. The location to which this dens
maximum ~temperature minimum! is shifted from the sym-
metry axes is predetermined by the initial velocity distrib
tion, as the system chooses the wall according to this di
bution, as discussed in Sec. II. During the simulatio
measuring the meany coordinate of the particles, we did no
observe any switch between the possible two states w
the asymmetry was explicit. We found in a linear stabil
analysis that the symmetrical solution proposed by Jen
and Richman@12# is unstable. In analyzing the solution@12#
one finds that the description of the asymmetric profi
needs higher order equations ine than in @12#. We do not
consider this analysis as a strict result quantitatively. Acco
ing to @22# the equations of Jenkins and Richman are
suitable for linear stability analysis because they neglect
e
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time dependence of the mean free path. But the equat
with the corrected constitutive relations@10# have the same
dependence on the hydrodynamic field and differ in theen
dependence only. We assume that this correction term ca
stabilize the system but can at most increase theen value
under which the solution becomes unstable.

We found a connection to the unstable directions o
served in uniformly sheared granular gases@8#. This suggests
that nonuniformly sheared systems possess the same ins
ity but in the Couette case the pattern formation is repres
by the boundary conditions. However, the geometry of
boundary conditions~walls! plays a major role in stabilizing

FIG. 11. The self-diffusion coefficient as a function of the re

titution coefficienten for Lx5Ly520, andN550 (n̄50.426) mea-
sured in natural units. These runs were carried out by moving b
walls in opposite directions withU565. Diamonds (L) mark
values determined from the mean square displacement, and
angles (n) mark values determined from the velocity autocorre
tion function.
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the flow fields, leading to a stationary state. In the bound
conditions of Jenkins and Richman@12# only static correla-
tions are considered and dynamic correlations, the role
multiple and correlated recollisions with the wall, are n
glected. We measured the number of collision sequen
which consist of collisions of a disk with two wall disk
successively, because such collisions provide disks lea
the wall at a steeper angle, and this can provide a gre
contribution to the pressure at lower granular temperatu
In the asymmetric flow regime, the number of such collisio
is clearly higher at the preferred wall than at the other, wh
supports our assumption. This is also implied by the fact t
in the final stationary state the minimum of the granular te
perature is only at the wall for very high inelasticities
densities, where we can observe closed layers of particle
the chosen wall. For moderate densities and restitution,
temperature minimum remains in the bulk of the system,
the clustering process stops at a stable density profile. S
an effect was described for a constrained homogeneous
tem in @5#. These boundary effects are one reason for
different results for the transition point obtained from stab
ity analysis or from measurement of the self-diffusion co
ficient and velocity autocorrelation functions. The effe
found in the dependency of these functions on the nor
restitution coefficient~see Sec. IV! is well described as a
consequence of the transition. However, the system size
in the simulations is too small to compare the two resu
We suggest that for larger systems where the Jenk
Richman theory is more valid we would obtain larger valu
for the transition point but we leave the measurements
volved for later studies. As a final note we would like
mention that, in systems with elastic collisions with the w
disks, the flow with the same parameters remains symme

The consequences of this paper are hard to verify in
periments because of the absence of gravity. However,
crogravity experiments for the same configuration are un
way @23#. We suggest that the two-dimensional case con
ered here would be realizable with disks on an air table
this would exclude gravity effects and would not interfe
with the behavior of the disks in the crucial horizontal dire
tion. Periodic boundary conditions could be achieved w
two similar stadionlike chains of disks, as performed in@23#.
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APPENDIX: THE LINEAR STABILITY MATRIX

In the following we describe the matrix elements of t
linear stability matrix. The notations includer5qn where
q5p/4 for s51, m51, andw5]y@ng0(n)#
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