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Instability of symmetric Couette flow in a granular gas:
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We investigated the inelastic hard-disk gas sheared by two parallel bumpy (@al®tte flow. In our
molecular dynamic simulations we found a sensitivity to the asymmetries of the initial particle positions and
velocities and an asymmetric stationary state, where the deviation(&etiysymmetric hydrodynamic fields is
stronger as the normal restitution coefficient decreases. For better understanding of this sensitivity we carried
out a linear stability analysis of the former kinetic theoretical solufibrT. Jenkins and M. W. Richman, J.

Fluid. Mech.171, 53 (1986] and found it to be unstable. The effect of this asymmetry on the self-diffusion
coefficient is also discussed.

PACS numbgs): 45.70.Mg, 45.70.Qj, 51.16.y, 51.20+d

[. INTRODUCTION found an interesting sensitivity to the initial conditions of the
simulation and asymmetric hydrodynamic fields, contradict-
In the last decade the clustering instability of undrivening the results in[12]. Therefore we carried out a linear
granular gases has been extensively researched. Since ttability analysigSec. Ill) around the solution of Jenkins and
first explanation of the instability1], investigations have Richman[12] and found it to be unstable against certain
been made by several methods including stability analysis diuctuations. We discuss the effect of this instability on the
the hydrodynamic equatiori2,3] and fluctuating hydrody- diffusion coefficient in Sec. IV and close the paper with a
namics[4]. The influence of nonlinear coupling between hy- discussion in Sec. V.
drodynamic modes has also been studigll and the long
time behavior of the clustered state examined with mode-
coupling theorieg6]. The evolution of vortex velocity pat- Il. SIMULATION RESULTS
terns preceding the clustering instability is well understood ) . ) ) )
[4], and the minimal system size, where the instability ap- | "€ System considered here consistedNaflentical, in-
pears and its dependence on the restitution coefficient hay@astic hard disks with mass=1 and radiug =1 confined
been found5,7]. ina rgctangular area of sidg XL, . This twq—dlmens!onal
A driven configuration, the uniformly sheared inelastic 2€@ iS bounded by parallel walls on two sides, which also
hard-sphere gagwith periodic boundary conditiopsalso ~ define the directionx and are of lengttL, . The system is
shows an instability and resulting pattern formationfghit ~ closed through periodic boundary conditions in theirec-
was shown that this pattern formation is guided by an instalion. The walls are., distance aparty direction. The origin
bility for short times and a shearing-caused convection foff the coordinate system is placed in the middle of the simu-
longer time scales. The special importance of this system j&t€d system, which sets the center of the wall disky at
the coupling of macroscopic and microscopic length scales *Ly2.
in sheared situations, as discussedign11]. The disks interact through an inelastic rough hard-sphere
A more realistic configuration is Couette flow, the shear-Poténtial, meaning that instantaneous two-particle collisions
ing of the gas between two parallel walls moved in opposité?ccur characterized by ratios of the final and initial velocities
directions. For this configuration with walls consisting of In the normal and tangential directions given by the normal
disks Jenkins and Richman derived boundary conditions foRnd tangential restitution coefficients,= —v/v, and e,
the momentum and heat transfer of the wéllg], proceed- =v/vy, f andi meaning the final and initial velocities. In
ing from their kinetic theory for dense granular gafk3). In  case of sliding contacts, is replaced by the ratio of tangen-
subsequent years this theory was developed fuftbgrfor  tial and normal momentum transfer characterized by the fric-
non-Maxwellian velocity distributions as if12]. In all of  tion coefficientu. As a driving force we move one of the
these papers the resulting hydrodynamic fields are symmetrigalls with constant velocity Q.
(density and granular temperaturer antisymmetric(flow We investigated the system with the event-driven molecu-
field) around the halfway point between the two boundinglar dynamics method ideal for simulating instantaneous col-
walls. It is of major interest whether the clustering instability lision rules[15]. To characterize the collisions we used
occurs in this configuration also and, if so, what its conse= —0.3 andu=0.2 and variec, between 0.6 and 0.99. We
quences are in the Couette flow. This paper is devoted to theonsider the system sidg,=L,=40 and the wall velocity
investigation of these questions. 2U =10 if not otherwise mentioned. The post collision ve-
The paper is organized as follows. In Sec. Il we presentocities and angular velocities as functions of the precollision
molecular dynamic simulations of this system, where wevalues argfor m=1, r=1)
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FIG. 1. Snapshot configurations in the steady state for different restitution coeffiejents7, 0.8, 0.9 from left to right. Lines from
centers of particles indicate the direction and magnitude of its velocity.

1+e, it Using several different starting configurations we noted
i =Vim 5 L(VimVpralrat o (1) that a dense region appears at one of the walls in the system
which becomes more and more distinct with decreasing
1+e, i but is not recogni_zable foe, near 1(Fig. 1. Using ran-
Vi =vj+ 5 [(Vi—vpralra+ —ry, (2)  domly placed particles and an initial uniform velocity distri-
m . . . K .
bution with several mean values in tledirection, we ob-
. served that the initial value of the mean particle velocity
o = o, _J_t(rnx r, (3)  determines the wall that is chosen for building up a clustered
li regime. If we define 4 as

o] == (1 X1y, @ va=(v) =V,
j
we can characterize the final position:uf>0 the upper
wall y=L,/2 is chosen; ifu4<0 the lower wally=—L/2
(Fig. 2). We used different initial conditions to test this find-
ing [17]. With particles placed in a stripe in the middle of the
system, organized on a lattice with initial velocity, and
using two of them shot against the two walls with initial
1+e, velocities that were Galileo symmetric with the situation of
jt:—,uT(vi—vj)rn if ¢>¢q (sliding contacy, two walls moving at+=U, we could maximize the time
) needed to develop the nonsymmetric density field, but it
eventually appeared after these initial conditions also, be-
1 cause numerical errors provide the needed fluctuations to
v, if ¢=<e, (sticking contact, (6) drive the system into one of the steady states.
We did simulations for smooth diske&=1 and w=0)
also and found the same effect, namely, if we chaps® be
small enough there is a distinct band of particles at one of the
Vi= (Vi —V)I (o + ) (7)  Wwalls and fore, close to 1 this band does not evolve. The
normal restitution below which we can speak about an asym-
and ¢, separates the sliding and sticking regions in terms ofmetric phase depends on the density; for higher densities it

rn is the normal vector of disk surfaces in collisiop= (r;

- ri)/|r]-—ri| andr, the tangential vector, the normal vector
rotated by#/2 in the counterclockwise directiom; and I
are the moments of inertia of the disks. The paramgter
depends on the type of collision in the tangential direction,

wherey, is the tangential velocity

the angle of incidencey= |v|/[ (vi—V;)r,], appears at higheg, values for the same system sizg. It
also depends oh,, for fixed density; for larget, the kinetic

7 l+te, energy influx per particle decreases as it is proportional to

0T oM 1—e° ®) the length of the wall. The assumed critical restitution coef-

ficientec(p,L,) does not depend on the driving velocitylas
To avoid inelastic collapsgl6], the intrinsic numerical is the only parameter that includes the dimensionality of time
breakdown of the method, we stopped the simulations wheand changingdJ is a rescaling of the time unit. For investi-
the time interval between two subsequent collisions becamgation of intermediate,, values for which the dense stripe is
smaller than the precision of the computations proposed imot so definite, we measured density and velocity profiles
[1]; but this stop occurred only for the smallest restitution
coefficient usede,=0.6, and for special initial conditions

where most of the particles did not move and the well-known ° e °

chainlike arrangement of particles could evolve after the e @Q%%@ °e © Og ¢
simulation started. For the experiments below we used par- o o ©2 %2 % 3% 0% 00
ticle numbers N=100-240, meaning area fractiom & o 3 % ° o-gun. 6
€[0.245,0.49. As test runs for larger systems we udéd e °
=L,=100, N=500, (»=0.162)} and {L,=L,=100, N G0000C0000C000000000

=1000, (/=0.324) parameter sets, resulting in the same FIG. 2. Snapshot configurations in the steady state for different
phenomenon. initial velocity distributions €,=0.7). Left,v4<0; right,v4>0.
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0.05 T T T T T T T systemg18,19. Another reason for taking theories for dense
gases into consideration is that the underlying assumptions
O are more valid as the ratio of the simulated system size to the
0.04 |- - mean free path is much larger in a dense gas. For these
reasons we performed a linear stability analysis of the
. A Jenkins-Richman solution. We now first give the equations
5003 | - of Jenkins and Richmafl3] and the boundary conditions
and the solution of the probleifi2]. Then we perform a

< linearization around this solution and calculate numerically
A - the eigenvalues of the stability matrix.

.02 R

. | , I . A. Jenkins-Richman solution

0.01

0 10 20 30 40 In this section we briefly describe the Jenkins and Rich-
¥ man[12] solution for a two-dimensional system of inelastic

FIG. 3. Granular temperature in theandy directions as a hard di.SKS drivgn by wo parallel' bumpy Wa”S.' The hydro-
function ofy (in units of disk radiug=1) across the system for dynaml_c equations for the den_SIIy fk_)W velocity u, and
e,=0.9. Values are averages over stripes of width 4 parallel to thdluctuation energyr for smooth disks without external forces
walls for a system of size,=40. are (see[13))
and the granular temperature in the system and found the p=—pV-u, ©)
same effect in the asymmetric nature of these funct{fig _
3). One can observe that with decreasing restitution the mini- pu=—V-P, (10
mum of the granular temperature moves to one of the walls.

We found these results to be valid for a broad range of
densities and for different system sizes. For low restitution a
crystalline structure appeared as compact layers near a wall. o o
The fact that the simulations did not stop at such dense cortdere the dissipation ratg and heat transport coefficient
figurations implies that the disks moved around a fixed plac&re of the form
and did not form a connected line of particles long enough
for inelastic collapse to occyd.6]. 4(1—e,) kT

Simulations with time-step-driven molecular dynamics YT 2 (12)
using damped harmonic oscillator forces between the par-
ticles as a function of their overldfi5]—to achieve velocity

pT=—=V.-Q-Tr(P-Vu)—y. (12)

independent restitution—show the same clustering effect at _2po vgoT (13)
the walls. This suggests that this effect is closely related to o T

dissipative collisions and does not require instantaneous col-

lision rules.

wheregg is the Enskog correction term accounting for ex-
cluded volume effects as a function of the packing fraciion
IIl. STABILITY OF THE JENKINS-RICHMAN SOLUTION

Our findings above contradict the kinetic theoretical cal- 90:16—7"2,
culation of Jenkins and Richm4t2] and the improved ver- 16(1-v)
sions of the problenil4], inasmuch as the cited results are
always(ant)symmetric profiles in thg direction for the hy- ando=2r is the disk diameter. The constitutive relations for
drodynamic fields of density, flow velocity, and granular the energy fluxQ and pressure tensér are
temperature. This contradiction raises the question of the sta-
bility of the (ant)symmetric solution. Moreover, it is plau- Q=-«VT, (14)
sible that in an elastic system the hydrodynamic profiles will
be symmetric, although this is not a steady state because of 1
the ever rising temperature caused by viscous heating. There- P=|2pvgoT— =« Tr(D) |l — «D. (15)
fore, it is of interest to see whether a phase transition occurs 2
in the system; specifically, whether there exists a critgal
value separating th@ntijsymmetric and asymmetric phases From the boundary geometry and the assumption of a Max-
or the(ant)symmetric solution is unstable at arbitrarily small wellian velocity distribution the momentum and fluctuation
inelasticities. Because at high densities the instability inenergy supplied by the wall in unit time and length are de-
question arises at normal restitution closer to 1 and kinetiterminable[12]. This needs an expansion ¥+ o/L, and
theoretical calculations are more and more inadequate fassumptions about the dependence of given ratios of the hy-
increasing inelasticity, it is reasonable to use kinetic theorieslrodynamic fields or (see[12]), which narrows the validity
for dense systems and we desist from the consideration af the theory. The supplied momentum obtained in that way
more sophisticated hydrodynamic equations for low densitys
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1 2\12 9 The density, calculated from
== + = —=|==-
M, 2/ox(l e)T|n, p T1,2<sm9 cos&) =29, 24
2\12 & must fulfill the condition that its integral on the whole sys-
+ P T_l/zu%ﬁlllﬁy (16  tem gives the prepared particle number. As mentioned, in
that condition the only free parameter remaining is the den-
with sity at the boundaries, which must be calculated iteratively.

2 . B. Stability analysis
lapy=|5SIPO—2|N,NgN, _

3 Around the above solution of the boundary value problem
we performed a linear stability analysis with the perturbed

2 ”
—§S|n20(nat,3t7+nﬁtaty+nytatﬁ), (17)  quantities

p'=p+dp, (25)
and the supplied fluctuation energy is
2 1/2pX(1_en)T3/2 U,:U+5U, (26)
D=|—| ‘“+—un—"F"—, 18
( 77) sing (18) T' =T+ T. (27)

wheren andt are the normal and tangential vectors of theWe split the velocity perturbation in the andy directions
wall, respectively, and characterizes the bumpiness of the and use plane waves for the perturbations,
wall. For wall disks with the same diameter as that of the gas

particles,d is given by[12] op= opxexp(—ik-r), (28
. B g ou _ 5Uk K 5

sma—a, ow) =\ sw, exp(—ik-r), (29

whered is the distance separating the centers of two wall ST=6Texp —ik-r). (30

disks. For the wall geometry of our system=2¢ and
therefore sirg=1/2 and #==/6. In Egs.(16) and (18) y  With this choice the resulting equations have the form
accounts for static correlation effects in collisions at the

boundary and ,, a=Xx,y is the slip velocity, the difference dSpx opk
between the velocity of the wall and the flow=U—u. FOUy Suy
From the equality of momentum and energy transfer of the Py —A swe | (3D
wall for unit time and unit length the boundary conditions tok k
are ;0T OTy
M=P-n, (19  whereA is the stability matrix with elements given in the
Appendix.
M-v—=D=Q-n. (20 With the help ofMAPLE Vv release 5 we analyzed the ei-

genvalues of the stability matriA for different densities,
The solution can be calculated from these equations excepéstitution coefficients, wave numbers, and sites. In Figs.
for one parameter—the value of the solid fraction at the4—7 we present results for some of the parameter sets that are
boundarieg(for fixed number of particlgs—which must be representative for the different situations. With the choice of
iterated to get the given density in the system, which we didhe negative sign in Eq31) a negative eigenvalue means an
numerically. Thus the form of the hydrodynamic fields solv-unstable solution. All of the figures shown feature at least
ing the boundary value problem is one eigenvalue that is negative in the small wave number

region. This signalizes an unstable fluctuation. The upper

NU—-v)No cosl‘( )\y) zero point of this eigenvalue approaches the zero wave num-

2712sinh(\ /2)SL ’

w(y)= L (21 ber as we increase the restitution coefficient and becomes
smaller than Zr/L, the smallest possible wave number in the
U—u A system, at a certain value ef, that depends on the other
u(y)= .—sin?‘( ) (22)  parameters. However, this value is very close to 1, which
sinh(A/2) suggests that the symmetrical solution is always unstable lin-
early, and nonlinear effects can move this transition point to
higher inelasticities. We analyzed the most unstable direction
of the solution also, as we plotted the unstable eigenvalue for
a given amplitude of the wave number and for the whole
angle measured from the direction of the mean flow in a
counterclockwise direction, as seen in Figs. 8 and 9. Accord-

(23)  ing to the figures, the most unstable directions are close to

L

with T(y)=w(y)?, SandN are the shear stress and pressure
respectively, and. must be solved fromi12]

2

A k(A)_(l—en)w(sine[l—(wi/s)sinae]_1)

Ztan "2\ 20sing|  0(6/sin6—coso)
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FIG. 4. Eigenvalues of the stability matrix fe,=0.9, y=0, FIG. 6. Eigenvalues of the stability matrix foz,=0.997,

average packing fraction=0.486, andk, points in the direction y=0, average packing fractiom=0.486, andk, points in the

a=m/4 measured counterclockwise from the mean flow direction.direction « = /4 measured counterclockwise from the mean flow
direction.

the anglest /4. These are the same angles found to be the

governing unstable directions in linear order for pattern for-

mation by Tan and Goldhirsch for the uniformly sheared

granular gas8].

averages over the whole systefn,) was calculated from

the measured average displacement of the particles averaged
over severa(50—100 runs and over particles. Ensemble av-
erages were carried out the following way. For every param-
eter set we let the system relax to its steady state. The mea-
sured granular temperature averaged over stripes of width

In this section we investigate the crossover to asymmetrid =" 9enerated ther(y) function. Before every measure-
stationary states of the system and try to show the effect JN€nt we perturbed the velocities of every particle with a
the instability discussed above on the transport coefficientd!Niformly distributed velocity, the support of the distribution
For this reason we measured the mean square displacemditving the length of 2T(y), wherey is the coordinate of the
of the particles particle. After relaxation we carried out the measurement.

The (v,) average velocity was evaluated from a linear fit of
re=(x()—(v)t=x(0)1%, ri=([y(t)~y(0)1? the averagedk displacement of the particles, that is, the
(32 steepness af as a function of time.
From the mean square displacement for long times we
could evaluate the diffusion coefficient of the particles. We
fitted a power law with two fit parameteEs andb,

IV. SELF-DIFFUSION COEFFICIENT
AND CLUSTERED FLOWS

and velocity correlation functions

Cx={[ox() = (v I[vx(0) = (V) 1), Cy= <Uy(t)Uy(0)(?3

3
— b
in the system for streamwise and perpendicular directions. In f(t)=2Dt",
Egs.(32) and(33) the bracketg) mean space and ensemble
4 L] I L] I L) I L] )
1 L] l L] l L] I L) l J - //_
) vl 3| /]
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FIG. 7. Eigenvalues of the stability matrix fa,=0.999,y
FIG. 5. Eigenvalues of the stability matrix fer=0.95,y=0, =0, average packing fractiom=0.486, andk, points in the
k,=2m/L, and average packing fraction=0.486 as a function of direction «= w/4 measured counterclockwise from the mean flow
kyL/. direction.
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FIG. 8. Angle dependence of the real part of the eigenvalues for FIG. 9. Angle dependence of the real part of the eigenvalue for
e,=0.95,y=0, andv=0.486. The eigenvalue is plotted as a func- e,=0.997, y=0, and »=0.486. The eigenvalue is plotted as a
tion of the angle measured from the flow directiok,  function of the angle measured from the flow directién
=(2m/L)cos(®) andk, = (2m/L)sin(¢). =(2m/L)cos(p) andk,= (2/L)sin(¢).

to the mean square displacement restricted to long times. the velocity correlation function after the exponential decay
the value ofb was near 1 up to errors of 0.02, the system ysed to approximate it. The short time exponential decay
was assumed to be in a diffusive state. After that we toolkcharacterizes only the dilute part of the system. The slow
b=1 and fittedf(t) again forD. The time taken for the decay thereafter comes from the averaged effects of the
system to evolve into this diffusive state dependsegnas  slight diffusion in the dense region and from the influence of
suggested if20] for the homogeneous cooling state, andparticles entrapped or emitted by the dense region from or to
also depends on the steady state configuration, which is alsfie dilute one. In the absence of the asymmetric dense state
e, dependent. There are several reasons for this. First, t@bove the transition poir, , only the exponential relaxation
achieve this diffusive behavior in thedirection the particles appears.
have to experience the characteristics of the system— The buildup of correlations also causes increased time to
finiteness and inhomogeneity of the hydrodynamiche needed to reach the diffusive state, thus increasing simu-
profiles—and therefore have to travel between the two wallgation time, which restricted us to smaller system sizes for
several times. Ag, decreases and a dense cluster evolves alense material, as it did not allow fast computations. There-
one wall, this recognition takes more and more time. Alsofore the investigation of the size and density dependence of
the form of the velocity correlation function shows increas-the transition point is left for later studies.
ing correlations with decreasing,, as expected. After a The retrievable information from the mean square dis-
short ¢~ 10) fast decayg, shows an exponential decay up placement in the direction is bounded like the system itself,
to timest~100, and either changes to a slow decay for latehamely, it goes to a plateau value accordingLtp This
times(smalle,) or is relaxed(largee,) (Fig. 10. Both the finiteness influences velocity correlations alspshows only
short time correlations and the characteristic time of the exshort time fast decaying correlatiotend anticorrelations ap-
ponential increase as we decreage along with an earlier pear for smalk,). With the methods discussed above we do
changeover to the slow decay if it is apparent. not notice any mark of the transitidionly the small signal
The plot of the diffusion coefficient versus restitution co- presented if21] for time-step-driven simulations
efficient (Fig. 11) shows a plateau value of the diffusion  For more definite insight into the behavior of the system,
coefficient for larger values of,. Below e,=0.82, D in-  we carried out measurements specific to the configuration of
creases fast with decreasieg. We suggest that this value the stationary states. We divided the system into stripes par-
marks the transition point where the particles begin to prefeallel to the walls and restricted the averages in 83) to
one of the walls, and the dilute regions appearing allow for garticles starting from these stripes,
greater mobility for the particles. Making use of the noted
exponential decay of the velocity autocorrelatign we also ch=([vx(1) v} ()1[vx(0) —v}(0)]);,
estimatedD as the integral of a fitted exponential,

D~Ar if co~Ae 7, Cy=(vy(Dvy(0));, (34

knowing that this underestimat®s asAe ™" is smaller than ~ Where( ); denotes averaging over particles in stripatt
¢, for very short and long times, but gives nearly the Samefo and the ensemble average described above. The velocity
result as the long time behavior of above the transition v}(t) is the average velocity of particles starting from stripe
point and shows a smaller increase belowFig. 11). The i at timet. This velocity correlation function characterizes
difference between the values of the diffusion coefficient bethe stripe more and more as the difficulty in leaving the
low e, obtained with different methods, comes from the factstripe increases, which is the case in the dense layer evolving
that under the transition point there appears a slow decay iat the wall. The fact that the velocity correlation functicip
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FIG. 10. Velocity autocorrelation functions, (in units of U2=25) for a system with parametets = 20, L,=20, andN=50
(;= 0.426). In order of increasing, for short times are,=0.8,0.78,0.77,0.76. Inset: Velocity autocorrelation functid,nésame unitsfor
a systenlL,=80, L,=20, N=200 (;= 0.426), ance=0.76. The system was divided into five stripes of width 4. Only correlation functions
in the stripes at the walls are shown. Solid line marks the function at the wall of the cluster, and dot-dashed line at the opposite wall. Time
is measured in natural units € 1,U=5).

does not show a negative minimum at short tirffleg. 10—  time dependence of the mean free path. But the equations
which would be a sign of caging effects—suggests that thevith the corrected constitutive relatioh$0] have the same
particles essentially comoving with the wall barely move independence on the hydrodynamic field and differ in ¢he
the x direction with respect to one another. Instead, becausdependence only. We assume that this correction term cannot
of the shear situation, they are driven by diagonal collisionstabilize the system but can at most increase ghealue
which dominate the motion and smooth ayt There is a under which the solution becomes unstable.

negative minimum |rc (0 indexing the stripe nearest to the ~ We found a connection to the unstable directions ob-
wall at the cluste)rbut this includes the effect of the colli- served in uniformly sheared granular gak&s This suggests
sions with the wall particles, which give a negative contribu-that nonuniformly sheared systems possess the same instabil-
tion, as also seen in the velocity correlations in the stripe alty but in the Couette case the pattern formation is repressed
the opposite wall. This negative minimum appears also aby the boundary conditions. However, the geometry of the

restitution coefficients well above the transition. boundary conditiongwalls) plays a major role in stabilizing
60 T T T T T T T T T T T ]
V. DISCUSSION [ o ]
In this paper we considered a granular gas sheared by two 500 | -
bumpy walls. By means of molecular dynamics simulations ! ]
we discovered that the system shows a spontaneous symme- L ]
try breaking as it evolves to a stationary state that is asym- 400 1 p
metric in the hydrodynamic fields with respect to the center- = - ]
line of the system. The location to which this density 300 — ° —
maximum (temperature minimuinis shifted from the sym- r o ]
metry axes is predetermined by the initial velocity distribu- 200 L o k
tion, as the system chooses the wall according to this distri- r AAAARRR aofA o ]
bution, as discussed in Sec. Il. During the simulations, i ]

measuring the meaycoordinate of the particles, we did not 100 L L 1 L1111

076 0.78 08 082 084 086 0.88 09 092

observe any switch between the possible two states where .

the asymmetry was explicit. We found in a linear stability
analysis that the symmetrical solution proposed by Jenkins FiG. 11. The self- diffusion coefficient as a function of the res-
and Richmarj12] is unstable. In analyzing the solutiph2] itytion coefficiente,, for L, =L, =20, andN=50 (»=0.426) mea-
one finds that the description of the asymmetric profilessyred in natural units. These Tuns were carried out by moving both
needs higher order equations énthan in[12]. We do not  walls in opposite directions wittu==+5. Diamonds ) mark
consider this analysis as a strict result quantitatively. Accordvalues determined from the mean square displacement, and tri-
ing to [22] the equations of Jenkins and Richman are nofangles (\) mark values determined from the velocity autocorrela-
suitable for linear stability analysis because they neglect théon function.
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the flow fields, leading to a stationary state. In the boundary
conditions of Jenkins and Richmah2] only static correla-
tions are considered and dynamic correlations, the role of
multiple and correlated recollisions with the wall, are ne-
glected. We measured the number of collision sequences,
which consist of collisions of a disk with two wall disks
successively, because such collisions provide disks leaving
the wall at a steeper angle, and this can provide a greater
contribution to the pressure at lower granular temperatures.
In the asymmetric flow regime, the number of such collisions
is clearly higher at the preferred wall than at the other, which
supports our assumption. This is also implied by the fact that
in the final stationary state the minimum of the granular tem-
perature is only at the wall for very high inelasticities or
densities, where we can observe closed layers of particles at
the chosen wall. For moderate densities and restitution, the
temperature minimum remains in the bulk of the system, and
the clustering process stops at a stable density profile. Such
an effect was described for a constrained homogeneous sys-
tem in [5]. These boundary effects are one reason for the
different results for the transition point obtained from stabil-
ity analysis or from measurement of the self-diffusion coef-
ficient and velocity autocorrelation functions. The effect
found in the dependency of these functions on the normal
restitution coefficient(see Sec. 1Y is well described as a
consequence of the transition. However, the system size used
in the simulations is too small to compare the two results.
We suggest that for larger systems where the Jenkins-
Richman theory is more valid we would obtain larger values
for the transition point but we leave the measurements in-
volved for later studies. As a final note we would like to
mention that, in systems with elastic collisions with the wall
disks, the flow with the same parameters remains symmetric.

The consequences of this paper are hard to verify in ex-
periments because of the absence of gravity. However, mi-
crogravity experiments for the same configuration are under
way [23]. We suggest that the two-dimensional case consid-
ered here would be realizable with disks on an air table, as
this would exclude gravity effects and would not interfere
with the behavior of the disks in the crucial horizontal direc-
tion. Periodic boundary conditions could be achieved with
two similar stadionlike chains of disks, as performed28].
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APPENDIX: THE LINEAR STABILITY MATRIX

In the following we describe the matrix elements of the
linear stability matrix. The notations incluge= Jv where
9=m/4 for c=1, m=1, ande=d,[ vgo(v)]

Aq1=Uiky; (A1)

Ago=piky; (A2)
A13:p|ky+ (?yp, (A3)

A14=0; (Ad)
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